The effects of substrates, products and other ligands on the susceptibility of inositol monophosphatase to proteolysis by endoprotease lys-C

N.S. Gee, M.R. Knowles, G. McAllister and C.I. Ragan

Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Eastwick Road, Harlow, Essex, CM20 2QR, UK

Received 15 April 1991

Inositol monophosphatase is cleaved by endoprotease lys-C at a single site (Lys36-Scr37). The rate of proteolysis is greatly reduced in the presence of substrate (D,L-Ins(1)P) and Mg2+, and less so in the presence of Pi and Mg2+, consistent with protection of the susceptible bond in the E-P or E-P_i states of the enzyme. Potentiation by Li⁺ of the protection afforded by a substrate analogue, 1S-phosphoryloxy-2R,4S-dihydroxycyclohexane, and Mg2+ supports the idea that Li+ binds to the E-P state.

Inositol monophosphatase; Lithium; Proteolysis; Phosphoenzyme

1. INTRODUCTION

Inositol monophosphatase (EC 3.1.3.25) is responsible for the production of inositol from Ins(1)P, Ins(3)P and Ins(4)P [1], and is therefore essential for the continued functioning of the phosphoinositide cycle [2]. Uncompetitive inhibition of the enzyme by lithium has been proposed as the underlying mechanism through which lithium is effective in the treatment of manic depression [1,3]. Inositol monophosphatase from bovine brain is a homodimeric enzyme [1], each monomer consisting of 277 amino acid residues [4]. Proteolysis by endoprotease lys-C causes a single cleavage after Lys36, leading to a drastic loss of activity [5]. Previously, we had demonstrated that loss of activity caused by chemical modification with phenylglyoxal could be inhibited by substrate and other ligands [6]. In this paper, we show that the susceptibility of the enzyme to proteolysis with endoprotease lys-C is similarly decreased by substrate and ligands, lending support to our previous conclusions that the enzyme undergoes a conformational change to form a phosphoenzyme (E-P) complex.

2. MATERIALS AND METHODS

Bovine brain monophosphatase was expressed in E. coll as previously described [4] and purified by ion-exchange chromatography. Activity was measured by colorimetric determination of released Pi [1]. Digestion with endoprotease lys-C (Bochringer) was

Correspondence address: N.S. Gee, Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Eastwick Road, Harlow, Essex, CM20 2QR, UK. Fax: (44) (279) 416852.

carried out at 37°C in a final vol of 20 µl containing 50 mM Tris-HCl, pH 8.0, 10 μg of monophosphatase, 5 μg of endoprotease lys-C and further additions as indicated in the text and figure legends. At intervals (see figure legends) $4 \mu l$ samples were withdrawn and frozen immediately in solid CO2/acetone. Samples were subsequently analysed by SDS-PAGE [7] using 15% acrylamide separating gels and Coomassie blue staining. D,L-Ins(1)P and 1S-phosphoryloxy-2R,4Sdihydroxycyclohexane were synthesised as in [8] and [9], respectively. Protein was estimated by the method of Bradford [1]. The effect of monophosphatase ligands on endoprotease lys-C activity were measured using Chromozym PL (Boehringer) as a substrate. Each assay contained, in a volume of 1 ml, 50 mM Tris-HCl, pH 8.0, 0.1 mM Chromozym PL, 2.5 mU endoproteinase lys-C and monophosphatase ligands at concentrations indicated in the figure legends or in the text. The absorbance increase at 405 nm was measured at room temperature. Inhibition of 20% or less was found with Li⁺, Na⁺, Mg2+, inositol and the substrate analogue. D,L-Ins(1)P inhibited activity by 37% at 0.1 mM and 80% at 1 mM, while P; inhibited by 42% at 10 mM and was without effect at 1 mM. Li+, Na+ and Mg2+ in addition to D,L-Ins(1)P caused no further inhibition over that obtained with D,L-Ins(1)P alone.

3. RESULTS

Fig. 1 shows that in the absence of ligands, the monophosphatase subunit of M_r 30 000 was rapidly cleaved to a fragment of M_r 28 000 by endoprotease lys-C. In contrast, in the presence of substrate (1 mM) and Mg²⁺ (3 mM), degradation was almost completely prevented. The decrease in rate was estimated as several hundred-fold. Both Mg²⁺ and substrate alone caused a more modest decrease in the rate of proteolysis, approximately 4-fold. For the substrate this effect could be wholly attributed to inhibition of the activity of the protease (80% at 1 mM D, L-Ins(1)P). Since previous work had demonstrated that substrate can bind to the enzyme in the absence of Mg2+ [6], the inability of substrate alone to afford any protection suggests that

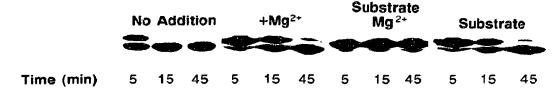


Fig. 1. Protection against proteolysis by substrate (1 mM D,L-Ins(1)P) and Mg²⁺ (3 mM).

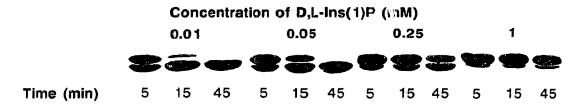


Fig. 2. Concentration dependence of effect of substrate on rate of proteolysis. Mg²⁺ (3 mM) and Li⁺ (25 mM) were present throughout.

the enzyme substrate (ES) complex is not the protected species. However, it is not clear from this experiment whether protection is a property of phosphoenzyme or non-covalent enzyme product complexes.

Lithium (25 mM) alone had no effect on the rate of proteolysis and did not alter the degree of protection afforded by Mg^{2+} , substrate or both under the conditions of Fig. 1 (results not shown). Since Li^+ inhibits substrate dephosphorylation, this demonstrates that complete protection can be achieved in the absence of product formation. In the presence of Li^+ to inhibit enzyme activity, protection was dependent on substrate concentration (Fig. 2). The concentration affording 50% of the maximum degree of protection was approximately 0.1 mM, close to the K_m value for D,L-Ins(1)P. Correction for inhibition of the protease by D,L-Ins(1)P made very little difference to either the degree of protection or the concentration dependence.

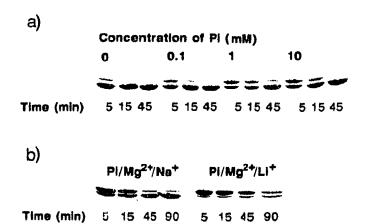


Fig. 3. Protection against proteolysis by P₁. In (a) Mg²⁺ (3 mM) was present. In (b) Mg²⁺ (3 mM) and either 25 mM Li⁺ or 25 mM Na⁺ were present.

As shown in Fig. 3a, P_i can also give rise to protection, although not as marked as with substrate. The protection by P_i was absolutely dependent on Mg^{2+} and was half-maximal at concentrations between 0.1 mM and 1 mM, similar to the K_i value of 0.5 mM [1]. Inositol, on the other hand, had no effect under any conditions, consistent with the inability of inositol to inhibit the enzyme [11].

Compared with a control containing Na⁺, protection by P_i/Mg²⁺ was slightly increased by Li⁺ (Fig. 3b). However, demonstrating potentiation by Li⁺ of protection by substrate/Mg²⁺ is complicated by substrate dephosphorylation in the absence of Li⁺ and the high degree of protection afforded by D,L-Ins(1)P and Mg²⁺ (Fig. 1). We, therefore, used a substrate analogue, 1S-phosphoryloxy-2R,4S-dihydroxycyclohexane, a potent competitive inhibitor of the enzyme (K_i approx. 1 μ M, [9]). The analogue is also a very weak substrate with a rate of hydrolysis 2.7% of that of 1 mM D,L-Ins(1)P. As shown in Fig. 4, 1S-phosphoryloxy-2R,4S-dihydroxycyclohexane and Mg²⁺ afforded protection greater than that seen with Mg²⁺ alone and this was considerably potentiated by Li⁺.

4. DISCUSSION

These results are reminiscent of those obtained using phenylglyoxal to modify the enzyme [6]. It was concluded that modification of a single arginyl residue was protected in the E-P and $E \cdot P_i$ states to the same extent. Formation of the ES complex afforded only a very small degree of protection. In the present study, ES complex formation afforded no protection against endoprotease lys-C cleavage and the $E \cdot P_i$ complex was only partially protected. Complete protection by substrate is probably therefore a result of E-P formation. With D,L-Ins(1)P and Mg²⁺, under the conditions

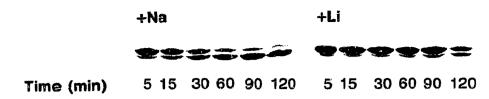


Fig. 4. Potentiation by Li⁺ of the protective effect on proteolysis of 1S-phosphoryloxy-2R, 4S-dihydroxycyclohexane (25 μ M). Li⁺ (25 mM) or Na⁺ (25 mM) were present as indicated.

used, protection was almost total, suggesting that nearly all of the enzyme was in the E-P state. With the substrate analogue, however, protection was only partial except in the presence of Li⁺. This can be explained by formation of a lower steady-state level of E-P with the substrate analogue alone. Addition of Li traps the enzyme as an E-P·Li complex (e.g. [6]) which is presumably also protected against proteolysis. The small potentiation by Li⁺ of protection by P_i may suggest that phosphoenzyme can be formed by reversal of the normal reaction pathway from E·P_i as well as from ES.

In a simple ping-pong mechanism in which hydrolysis of E-P occurs after loss of the product, inositol, the rate constant for E-P hydrolysis will be independent of the nature of the substrate [11]. Thus, the overall velocity of substrate hydrolysis will be proportional to the extent of E-P formation. It is therefore surprising that the substrate analogue used in this study should give rise to quite a high degree of protection against proteolysis (i.e. appreciable E-P formation) even though the rate of hydrolysis of the analogue was extremely low. This suggests that the rate constant of E-P hydrolysis might also be lower with the substrate analogue. This could be explained by release of the first product (inositol) after, rather than before, hydrolysis of the E-P bond.

Finally, protection against proteolysis strongly sug-

gests that the N-terminal region undergoes a conformational change during the catalytic cycle. This would explain the observation that a monoclonal antibody directed towards the N-terminus is inhibitory [5] since binding of the antibody would prevent the necessary structural transition.

REFERENCES

- Gee, N.S., Ragan, C.I., Watling, K.J., Aspley, S., Jackson, R.G., Reid, G.R., Gani, D. and Shute, J.K. (1988) Biochem. J. 249, 883-889.
- [2] Shears, S.F. (1989) Biochem. J. 260, 313-324.
- [3] Berridge, M.J., Downes, C.P. and Hanley, M.R. (1989) Cell 59, 411-419.
- [4] Diehl, R.E., Whiting, P., Potter, J., Gee, N.S., Ragan, C.I., Linemeyer, D., Schoepfer, R., Bennett, C. and Dixon, R.A. (1990) J. Biol. Chem. 265, 5946-5949.
- [5] Whiting, P., Gee, N.S., Potter, J., Howell, S. and Ragan, C.I. (1990) Biochem. J. 272, 465-468.
- [6] Jackson, R.G., Gee, N.S. and Ragan, C.I. (1989) Biochem. J. 264, 419-422.
- [7] Laemmli, U.K. (1970) Nature 227, 680-685.
- [8] Billington, D.C., Baker, R., Kulagowski, J.J. and Mawer, I.M. (1987) J. Chem. Soc. Chem. Commun. 314-316.
- [9] Baker, R., Leeson, P.D., Liverton, N.J. and Kulagowski, J.J. (1990) J. Chem. Soc. Chem. Commun. 462-464.
- [10] Bradford, M.M. (1976) Anal. Biochem. 72, 248-252.
- [11] Shute, J.K., Baker, R., Billington, D.C. and Gani, D. (1988) J. Chem. Soc. Chem. Commun. 626-628.